Package: ForeCA 0.2.7

ForeCA: Forecastable Component Analysis

Implementation of Forecastable Component Analysis ('ForeCA'), including main algorithms and auxiliary function (summary, plotting, etc.) to apply 'ForeCA' to multivariate time series data. 'ForeCA' is a novel dimension reduction (DR) technique for temporally dependent signals. Contrary to other popular DR methods, such as 'PCA' or 'ICA', 'ForeCA' takes time dependency explicitly into account and searches for the most ''forecastable'' signal. The measure of forecastability is based on the Shannon entropy of the spectral density of the transformed signal.

Authors:Georg M. Goerg [aut, cre]

ForeCA_0.2.7.tar.gz
ForeCA_0.2.7.zip(r-4.5)ForeCA_0.2.7.zip(r-4.4)ForeCA_0.2.7.zip(r-4.3)
ForeCA_0.2.7.tgz(r-4.4-any)ForeCA_0.2.7.tgz(r-4.3-any)
ForeCA_0.2.7.tar.gz(r-4.5-noble)ForeCA_0.2.7.tar.gz(r-4.4-noble)
ForeCA_0.2.7.tgz(r-4.4-emscripten)ForeCA_0.2.7.tgz(r-4.3-emscripten)
ForeCA.pdf |ForeCA.html
ForeCA/json (API)
NEWS

# Install 'ForeCA' in R:
install.packages('ForeCA', repos = c('https://gmgeorg.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/gmgeorg/foreca/issues

On CRAN:

blind-source-separationdimensionality-reductionforecastingmultivariate-timeseriessignal-processingspectrumtime-seriestime-series-analysis

5.40 score 13 stars 39 scripts 367 downloads 30 exports 13 dependencies

Last updated 4 years agofrom:d6ff736c37. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 13 2024
R-4.5-winNOTENov 13 2024
R-4.5-linuxNOTENov 13 2024
R-4.4-winNOTENov 13 2024
R-4.4-macNOTENov 13 2024
R-4.3-winOKNov 13 2024
R-4.3-macOKNov 13 2024

Exports:check_mvspectrum_normalizedcheck_whitenedcomplete_algorithm_controlcomplete_entropy_controlcomplete_spectrum_controlcontinuous_entropydiscrete_entropyfill_hermitianforecaforeca.EM.E_and_M_stepforeca.EM.E_stepforeca.EM.hforeca.EM.M_stepforeca.EM.one_weightvectorforeca.multiple_weightvectorsforeca.one_weightvectorget_spectrum_from_mvspectruminitialize_weightvectormvpgrammvspectrummvspectrum2wcovnormalize_mvspectrumOmegaquadratic_formsfaspectral_entropyspectrum_of_linear_combinationsqrt_matrixweightvector2entropy_wcovwhiten

Dependencies:astsacligluelifecyclemagrittrMASSplyrRcppreshape2rlangstringistringrvctrs

Introduction to ForeCA

Rendered fromIntroduction.Rmdusingknitr::knitron Nov 13 2024.

Last update: 2020-06-29
Started: 2020-06-07

Readme and manuals

Help Manual

Help pageTopics
Implementation of Forecastable Component Analysis (ForeCA)ForeCA-package ForeCA
List of common argumentscommon-arguments
Completes several control settingscomplete-controls complete_algorithm_control complete_entropy_control complete_spectrum_control
Shannon entropy for a continuous pdfcontinuous_entropy
Shannon entropy for discrete pmfdiscrete_entropy
Forecastable Component Analysisforeca foreca.multiple_weightvectors foreca.one_weightvector
Plot, summary, and print methods for class 'foreca'biplot.foreca foreca-utils plot.foreca print.foreca summary.foreca
ForeCA EM auxiliary functionsforeca.EM-aux foreca.EM.E_and_M_step foreca.EM.E_step foreca.EM.h foreca.EM.M_step
EM-like algorithm to estimate optimal ForeCA transformationforeca.EM.one_weightvector
Plot, summary, and print methods for class 'foreca.one_weightvector'foreca.one_weightvector-utils plot.foreca.one_weightvector summary.foreca.one_weightvector
Initialize weightvector for iterative ForeCA algorithmsinitialize_weightvector
Estimates spectrum of multivariate time seriescheck_mvspectrum_normalized get_spectrum_from_mvspectrum mvpgram mvspectrum normalize_mvspectrum spectrum_of_linear_combination
S3 methods for class 'mvspectrum'mvspectrum-utils plot.mvspectrum
Compute (weighted) covariance matrix from frequency spectrummvspectrum2wcov weightvector2entropy_wcov
Estimate forecastability of a time seriesOmega
Computes quadratic form x' A xfill_hermitian quadratic_form
Slow Feature Analysissfa
Estimates spectral entropy of a time seriesspectral_entropy
whitens multivariate datacheck_whitened sqrt_matrix whiten